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An Optimized Parallel Admittance Matrix
Approach Using the Adjacence-Graph

Recursive-Thresholding Technique
Alessandra Esposito, Federico Malucelli, and Luciano Tarricone

Abstract—The admittance method is an accurate approach for
the analysis of electromagnetic circuits. Unfortunately, until now
it has suffered from two main limitations, i.e., its high numerical
complexity and its lack of robustness, due to the risk of numer-
ical ill conditioning in a linear system representing the core of the
approach. In a previous paper, both drawbacks have been solved,
using a strategy based on the system partitioning into many inde-
pendent and well-conditioned reduced-size subsystems, thanks to
the exploitation of the matrix adjacence graph properties. In this
paper, we demonstrate that the use of this strategy paves the way to
a natural, straightforward, and low-cost migration on distributed
platforms, with a consequent substantial reduction in computer
times. Furthermore, the use of suitable optimization strategies pro-
posed here allows an optimum partitioning of the system in order
to maximize the parallel efficiency.

Index Terms—Admittance matrix, mode matching, parallel
computing, optimization.

I. INTRODUCTION

T HE mode-matching (MM) technique is one of the most
attractive frequency-domain approaches for the analysis

of microwave (MW) circuits because of its efficiency and ac-
curacy [1]–[3]. A more recent formulation, using the general-
ized admittance matrix (GAM) has been proposed [4], based on
the interconnection of parallel epipedal elementary cells. This
approach, useful for both its opening to enhanced optimization
techniques [5], [6] as well as for its flexibility, suffers from the
risk of ill conditioning of the system matrix.

Very recently, this problem has been efficiently circumvented
by using the so-called adjacence-graph recursive-thresholding
(AG–RT) technique [7]. The AG–RT technique, by exploiting
some interesting properties of the system representation via ad-
jacence graphs, and recursive operations of thresholding on the
matrix entries, decomposes the system into many independent
subproblems. Each subsystem can, therefore, be considered sep-
arately, and it is observed that its condition number is substan-
tially improved with respect to the original admittance linear
system. The original sparse system is, therefore, rearranged into
a block-diagonal system, whose blocks represent small-size and
well-conditioned systems.
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One of the attractive features is that the attained subsystems,
thanks to their independency, can be solved all simultaneously.
In this paper, this feature is completely exploited. By using suit-
able optimization strategies, as well as advanced parallel com-
puting techniques, the problem of solving all the subsystems
concurrently in the minimum computing time for a given com-
puting system is solved.

Assuming a generic heterogeneous distributed platform, an
optimum assignment policy is found so that the load-balancing
among processors is maximized, and computing costs are re-
duced as much as possible.

The whole strategy is tested on a distributed-memory parallel
platform (IBM SP2), but can be completely implemented on
very low-cost computing environments, i.e., PC clusters, such
as the Beowulf1 and using freeware software available through
the Web, such as the Message Passing Interface (MPI).2

Consequently, the proposed strategy in conjunction with the
AG–RT method represents the most effective and low-cost way
to achieve high-performance computing when using the GAM
approach.

The paper is structured as follows. First, we shortly recall
the GAM method and its numerical properties, as well as the
AG–RT strategy [7]. Later on, we propose a policy for an op-
timum parallel migration, based on an optimization formulation.
Finally, some results are given, demonstrating the effectiveness
of the parallel AG–RT GAM solution, as well as its amenability
to a large class of distributed-memory environments.

II. GAM FORMULATION AND THE AG–RT STRATEGY

A. Numerical Characteristics of the GAM Approach

The GAM method has been described in several papers [4],
[8]–[10] and we just recall here very basic considerations.

The domain is generally partitioned into atomic elements
with a simple geometry so that their admittance matrix can
be evaluated by using the approach of metallic resonators and
circuit theory [11]. By using suitable field expansions over
the resonator apertures, and by indicating with the
dyadic electric Green’s function, we can evaluate the generic
entry in the admittance matrix, as referred to theth and th
apertures, and the th and th ports

(1)

1[Online]. Available: http://www.beowulf.org
2[Online]. Available: http://www.mpi-forum.org
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The matrix dimension is ( being the number of
modes retained to represent the field on theth aperture, and
being the number of apertures).

Consequently, the GAM approach has its bottleneck in the
solution of a linear system

(2)

where is the vector of unknown voltages inside the circuit
and at its output ports, whileis the vector of excited currents
inside the circuit and over its output ports. The two main issues
for improving the numerical performance are: 1) avoid risks of

ill conditioning and 2) reduce the system solution time. Both
goals have been achieved by using the AG–RT strategy, which
is now revisited for the reader’s ease.

B. AG–RT Strategy

The AG–RT is one of several strategies based on the simple
idea of reducing the order of the problem by decomposing the
system matrix into suitable fragments or the solution space into
smaller subspaces [12]–[18]. The AG–RT approach can best be
resumed by the following simple example, which is given in a
more expanded form in [7].

We suppose that the system matrix is, for instance,

(3)
where entries larger than 10 are represented with. If we
perform a first thresholding, neglecting values smaller than

, we are not able to identify any independent subproblems,
as the resulting system matrix is

(4)

We now introduce the concept of theadjacence graph. Each
row/column of the matrix is numbered and represented by a
node identified with the corresponding number. An arc con-
nects nodes and if and only if the entry in the matrix
is not a zero. Referring to the current example, the attained
graph is potentially partitionable into two subgraphs, provided
that the entry (or equivalently ) is negligible. This is the
case, provided that a new thresholding action is performed, with

. Now, we actually have identified two independent

Fig. 1. E=H-plane filter analyzed by applying the AG–RT GAM strategy.

subproblems, corresponding to rows/columns 1,7–9 and 2–6. It
is also theoretically proven and empirically verified that the re-
cursive thresholding improves the condition number [19].

III. PARALLELIZATION OF AG–RT GAM AS AN

OPTIMIZATION PROBLEM

The description of the optimum policy for a parallel solution
is now given. In the following, for the sake of clarity, we refer
to a real example, i.e., the circuit in Fig. 1, with a system matrix

of size 1308. The matrix is 18% sparse, having 30 386
nonzero entries. Its condition number is very bad, thus, even
very sophisticated system solvers are not able to find the system
solution.

The application of the AG–RT strategy, with a final threshold
of 10 , results in the system decomposition into 38 indepen-

dent subsystems (generally calledconnected components(CCs).
One of them has dimension 967, and all the others are smaller
than 90. Apart from the largest CCs, all the other subsystems
have quite a good condition number, with a determinant larger
than 10 and a condition number smaller than 10.

On the contrary, the largest subsystem is still ill conditioned,
but this problem can be avoided by performing one additional
recursion of the AG–RT strategy. With a final of 10 , the
submatrix of size 967 can be partitioned into a large number of
CCs (over 500). The condition number of nearly all the subsys-
tems is quite good (smaller than 10). This finally allows the
complete solution of the problem. The error when computing
the scattering parameters, due to the thresholding action with

, is 1.1%, and therefore, is comparable with respect
to typical manufacturing or experimental tolerances. The error
is referred to the results attained by using the complete admit-
tance matrix, when no zeroing is performed.

The starting matrix of size 1308 is finally partitioned into
579 subsystems, ranging from one system of size 174 to many
others of smaller size down to size 1. All these subsystems are
independent, and they can be solved concurrently. Therefore,
the analysis of the complex circuit of Fig. 1 and the solution of
the relative linear system can be performed in a distributed or
parallel environment, and different strategies can be followed
when distributing the partitions and tasks through the proces-
sors. For instance, a maximum load-balance policy or a min-
imum wall-clock (makespan) strategy, just to make some ex-
amples, can be pursued (with the consequent different choices
for several parameters). They are linked to one another, thus
influencing the numerical characteristics of the problems, i.e.,
value of , error affecting the solution, number of CCs, and
numerical complexity of the possible different linear system
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solvers to be used on each subsystem (iterative sparse or di-
rect banded). Other important issues are also the computing en-
vironment (shared versus distributed memory, processor inter-
connectivity, network performance, etc.) and the programming
paradigm [(single program multiple data (SPMD) versus, for in-
stance, master/slave (MS)].

The problem to be solved, revisited in a very simple way,
is as follows:for a given admittance matrix, and considering
both the number of processors available, and the performance of
each processor, which is the optimumvalue, the best number
of AG–RT iterations, and how must several CCs be distributed
among the available processors, in order to minimize the com-
puting time?

Due to the high complexity of the problem, it is useful to at-
tack and solve it in a general fashion by using the typical op-
timization formulations and techniques. This is performed and
described in the following section.

A. Optimal Thresholding

Consider an matrix with elements having values
in and let be a giventhresholdparameter. Let

be the filtered matrix obtained as follows:

if
otherwise

(5)

For any given threshold and by suitably reordering rows
and columns, reduces to a block diagonal matrix where,
in practice, each block identifies an independent system of the
form (2). In principle, setting reduces to the
identical matrix. Let us call
the submatrices yielded by a threshold, corresponding
to the CCs of the related adjacence graph .

In a distributed computing environment withheterogenous
processors, we can give an estimate of the execution time needed
to solve each subsystem

(6)

with the most efficient method depending on the character-
istics of the matrix. Let be the execution time estimation
for solving system on processor , ,

.
Once the decomposition is obtained and the execution times

are evaluated, the crucial point is to assign the jobs (i.e., the
computation of system solutions) to the processors so that the
load is as balanced as possible, or the completion time of the last
job is minimized (minimum makespan). We can assume that the
submatrices are available in all the processors so that the com-
munication times can be disregarded (as proven in Section IV).
The evaluation of the execution times depends on the number
and size of the submatrices.

The problem can be mathematically formulated as follows:

so that

(7)

where the variable if system is assigned to processor
, and 0 otherwise. The variablegives the makespan.
The minimization of the makespan is a hard combinatorial

optimization problem, indeed the known subset sum problem
(i.e., the problem of partitioning a set of weighted elements into
two subsets of equal total weight [20]) is a particular case where
only two identical processors are available.

Since there is the need for assigning jobs to processors in a
short time (otherwise the load balancing would be pointless), the
problem must be coped with a heuristic algorithm. The reader
can refer to [22] for a survey on heuristic algorithms and poly-
nomial approximation schemes for this kind of problems. For
the sake of simplicity, we adopt the heuristic known as longest
processing time (LPT) assuming that all processors are identical
and preemption is not allowed. However, any other, even more
sophisticated, heuristic can be used instead. This heuristic guar-
antees a makespan not larger than twice the optimal one. In this
heuristic the current LPT is assigned to the first idle processor.

Let us assume that the estimation of the makespan evalu-
ated when the threshold is fixed to is . Note that
monotonically decreases when increases. Now we address
the problem of finding the smallest threshold value, which
yields a makespan not larger than a given desired value. As
each evaluation of can be quite time consuming, the key
point is to determine with the minimum number of guesses.

We now describe an efficient method to keep the CC infor-
mation updated when the parameterchanges. Note that we
can restrict ourselves to consider the actualvalues only, as
possible threshold values, thus limiting the search of theto
the nonzero entries of matrix . Starting with , we
have defined by singleton nodes, i.e., CCs of size
1. When decreases, some edges are added to the adjacence
graph, corresponding to the nonzero elements greater than.
In this case, some CCs may melt in a single component. We can
efficiently keep track of the CCs evolution whendecreases by
means of a suitable data structure [23]. At the beginning, when

, we have disjoint singleton sets. Each time an edge
( ) is added to the graph, we perform the operations
and , which give the sets and to which they be-
long, respectively. Whenand belong to different CCs (i.e.,

), the addition of edge ( ) causes the re-
union of the two components in a single one; thus, we perform
the operation , which updates the data structures
so that the elements of the two components will be recognized
as elements of the same new component. The implementation
of these operations is quite efficient and simple: the amortized
complexity of performing - operations is
almost linear [23].
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As a consequence, we can perform a binary search over the
set of nonzero values of matrix to determine . Each time
we make a new guess of the threshold, we update the adjacence
graph starting from the smallest graph we have stored, adding
the new edges and updating the CCs. The execution times
are then evaluated and the heuristic to determine the makespan
is applied. If the makespan is larger than the desired one, we
have to increase the current threshold; on the contrary, if the
makespan is larger than the desired one, we have to decrease it.
The binary search algorithm is summarized as follows.

Procedure bin-search;
begin
let be the array of nonzero en-

tries sorted in non increasing order,
;

; ;
initialize the - data structure

for graph ;
; ;

initialize the - data structure
for graph ;
repeat

;
; ;

for each ;
begin
add edge ( ) to ;
if then ;

end;
evaluate for each CC of ;

;
if
begin

; ; ;
end;
else begin ; ; end;

until
end;

The overall complexity of the algorithm is
, where is the complexity of the

algorithm computing the minimum makespan.

IV. RESULTS

The accuracy of the AG–RT GAM implementation is first of
all tested on two different circuits, as reported in Figs. 2 and 3.
As is noticeable from these figures, the accuracy is satisfactory.

The results for the parallel implementation of the AG–RT
GAM, on the contrary, are discussed referring to the above men-
tioned example of Fig. 1, whose main characteristics have al-
ready been described. For a reliable analysis of the parallel per-
formance of the strategy, a discussion must be presented on its
serial performance, which is proposed in Section IV-A.

A. Serial Results

As stated before, the admittance matrix for the circuit of Fig. 1
is partitioned into 579 subsystems, ranging from one system of

Fig. 2. E=H-step cascade analyzed by applying the AG–RT GAM approach
(Y3D), compared with a generalized scattering matrix simulation (MM) and a
licensed finite-difference time-domain software (XFDTD).

Fig. 3. Filter analyzed by applying the AG–RT GAM approach, compared
with experimental data from [24].

size 174 to many others of size 1. The original matrix has a bad
condition number so that the analysis could not be performed.
The proposed approach substantially improves the numerical
stability of the method so that the several linear subsystems can
all be solved by using very efficient banded solvers.

Moreover, the analysis of the circuit and the solution of the
relative linear system can be performed with a significantly re-
duced computational complexity. In order to benchmark this, we
have generated a 1308 sparse matrix with the same pattern of the
original matrix and an improved condition number so that the
sparse solver could be used. Afterwards, we have compared the
computing times using the standard sparse solver (SP) versus the
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TABLE I
SERIAL COMPUTING TIMES (IN SECONDS) AS REFERRED TO ANIBM RS6000
390. DATA REFER TOBOTH THE USE OF ASPARSEITERATIVE SOLVER AND TO

THE USE OF THEPROPOSEDAG–RT STRATEGY IN CONJUNCTIONWITH A

BANDED SOLVER. BOTH SOLVERS ARETAKEN FROM SLATEC LIBRARY

AG–RT strategy. In Table I, results are given on an IBM RS6000
390. The AG–RT strategy computing time is composed of the
time needed to solve all the subsystems (145 s) plus the time
needed to fragment and arrange all data (21 s).

As easily noticed, the global speed-up is around 14 times.

B. Parallel Implementation—Results

Once the serial implementation has been designed, the frac-
tion of intrinsically serial and parallel work must be esti-
mated in order to evaluate the maximum achievable speed-up
in a parallel environment. In fact, in accordance with Amdhal’s
law [21], if is the number of processors, we have

(8)

The parallel task is, in our case, the solution of the many inde-
pendent subsystems derived from the starting one. Of course,
and are strongly correlated with the original matrix and with
the several parameters influencing the system decomposition.
Referring to the circuit of Fig. 1, is approximately 0.13, and
the maximum achievable speed-up is approximately 7.7.

The implementation of the strategy in a parallel environment
can be performed in several different manners. In this paper, we
focus our attention on two main scenarios, i.e., an MS imple-
mentation, and an SPMD approach. Both are supported by a par-
allel virtual machine (PVM)/MPI environment. In the MS im-
plementation, a master program coordinates a variable number
of slave programs running on different processors. Two different
kinds of programs must be written down. In the SPMD imple-
mentation, a single program is written and, on each processor,
an instance of the same program is running in the meantime.

The referenced platform is an eight-node IBM Scalable Par-
allel 2. Each node is thin, with an IBMRS6000 390 Power2 pro-
cessor (66 MHz), and the point-to-point connection has a band-
width of 9.9 MB/s and a latency of 312s.

1) MS Implementation:In the MS implementation, the
master process is engaged with fragmenting the linear system,
and scattering submatrices to all slave processes. It finally
gathers solutions and builds up the whole solution vector.
The optimum subsystem distribution, which is estimated by
applying the optimization strategy previously described, is
accomplished as described in Table II so that the best load-bal-
ancing and minimum execution time is achieved.

The performance achieved with the MS implementation is
summarized in Table III (times are given in seconds).

As noticed, interprocessor communication plays a major role
and limits the achieved speed-up to 3.5, as attained by com-
paring the solution time in Table III with the one in Table I.

TABLE II
SUBSYSTEM PARTITIONING AND ASSIGNEMENT TODIFFERENTPROCESSORS.

FOR EACH PROCESSOR, THE SIZE OF A SUBSYSTEM AND THE RELATIVE

NUMBER OF SUBSYSTEM (IN BRACKETS) ARE GIVEN

TABLE III
TIMES (IN SECONDS) FOR THEDIFFERENTTASKS IN THE MS IMPLEMENTATION

TABLE IV
TIMES (IN SECONDS) FOR THE DIFFERENT TASKS IN THE

SPMD IMPLEMENTATION

2) SPMD Implementation:In the SPMD implementation,
all the processes perform the same action, assuming that, on
each processor, the has been stored. Of course, each process
performs the system fragmentation, but solves only a subset of
all the generated subsystems (the partitioning policy is the same
as described for the MS implementation in Table II). In the
SPMD case, the data structures and operations to support the
system fragmentation are less heavy than in the MS case, and
this slightly reduces the corresponding computing time, as no-
ticed from Table IV, where times for the SPMD code are given.

A speed-up of over six is, therefore, observed, with respect to
the serial computing time reported in Table I.

V. DISCUSSION ANDCONCLUSIONS

The speed-ups achieved by applying the proposed strategy
are attractive and turn it into a viable methodology for real
industrial applications. In fact, times reported in the previous
benchmarks refer to a single analysis. In real industrial prob-
lems, where tuning and trimming of circuits is attained after
long optimization processes, usually deserving thousands of
circuit analyses, the proposed strategy removes a major limita-
tion of the GAM approach, i.e., its computational complexity.
This can be achieved at low costs on affordable platforms: we
have proven that, on serial platforms, it performs more than the
standard GAM for a factor larger than 14 times.

The advantage of the proposed strategy is also more evident
when referring to distributed/parallel platforms, where we have
achieved substantial speed-ups: on an IBM SP2 with eight pro-
cessors a 6.3 speed-up is observed, with respect to a theoretical
limitation of 7.7. Furthermore, the approach proposed here is
also quite amenable to be implemented in a low-cost Ethernet
etherogenous distributed memory PVM/MPI environment, as
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the low influence of communication tasks in the SPMD version
also guarantees good performance on such a network.

Moreover, and of primary importance, the proposed approach
is also useful in order to solve severe numerical problems of
ill conditioning, which sometimes affect the GAM approach.
We have proven on a real case that the AG–RT strategy is able
to divide the starting system into independent well-conditioned
subsystems, thus allowing the efficient analysis of the circuit. It
has also been verified that the parallel optimized AG–RT GAM
strategy is nearly four times faster than the standard generalized-
scattering-matrix formulation of the same approach.

Finally, the strategy proposed here is general, and can be ex-
tended to many other numerical methods based on circuit theory,
and its application is currently under evaluation for several other
numerical methods for electromagnetic (EM) circuit simulation
in distributed environments.
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